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FLUID FLOW IN CURVED DUCTS 

S. JAYANTI,* G. F. HEWITTt AND J. R. KIGHTLEYf 
Harwell Laboratory, UKAEA,  Oxfordshire, OX11 ORA, U . K .  

SUMMARY 

The advent of standard algorithms for the numerical solution of partial differential equations has given 
researchers a new tool for fluid flow calculations. In this paper, single-phase flow in curved ducts is 
numerically simulated by imposing a spatially varying centrifugal force on a fluid flowing in a straight tube. 
The resulting set of partial differential equations is solved using the HARWELL-FLOW3D computer 
program. Comparison with other numerical and experimental results shows that this simplified formulation 
gives accurate results. The model neglects certain geometric terms of the order d / D ,  the duct-to-coil diameter 
ratio. The effect of these terms is investigated by considering the flow in a 90" bend for large d/D.  It is shown 
that while there may be significant error in the prediction of the local variables for large d/D,  the 
circumference-averaged quantities are well predicted. 

KEY WORDS Numerical simulation Centrifugal force Finite difference method Laminar flow Heat transfer 
Coils Bends 

1. INTRODUCTION 

Fluid flow in bends and coils is encountered in many industrial situations. An important feature 
of such flow is the presence of secondary flow in a plane normal to the axial flow direction. This 
has the effect of increasing the average pressure drop and heat transfer coefficient as compared to 
straight tubes. The prediction of these quantities is important for the optimum design of 
industrial equipment, and this need is reflected in many studies conducted over the past 60 
years. - l o  

Traditionally, engineers and scientists have used theoretical and experimental techniques for 
the study of fluid flow. However, both techniques have their shortcomings and have only limited 
application. With the increased complexity of design equipment, coupled with the parallel 
development of computers and standard numerical algorithms, the trend nowadays is to use 
numerical techniques to solve a governing set of partial (or ordinary) differential equations; the 
role of experimental techniques is increasingly being relegated to that of generating data for the 
development and validation of numerical models. 

However, the application of numerical techniques to practical flow situations is fraught with 
problems, arising partly from the physical complexity of the flow (e.g. turbulence) and partly from 
the geometrical complexity of the solution domain. For the study of fluid flow in bends and coils 
we encounter both sources of problems, but the motivation for this study comes from those 
arising from geometrical complexity. The numerical solution of flow in curved ducts often 
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requires the use of a general non-orthogonal grid in which irregular-shaped control volumes are 
used to fit the physical flow domain. While the solution of transport equations in simple 
orthogonal co-ordinate systems on regular grids is well understood and is relatively straight- 
forward, the equations on general non-orthogonal girds are much more complicated and are 
difficult to code. Moreover, they usually contain cross-derivatives in pressure and other variables 
which give rise to major computational problems. While these problems can be overcome, this 
can only be done by resorting to sophisticated codes and techniques". l 2  which are beyond the 
reach and comprehension of the design engineer. 

With this in mind, we present a simplified formulation for the calculation of the flow field in 
coils and bends: the flow is treated as that in a straight tube in which each fluid element is subject 
to a centrifugal force. This straight-tube formulation of the problem permits the use of simple co- 
ordinate systems, such as a Cartesian (cylindrical) co-ordinate system for a duct of rectangular 
(circular) cross-section. We illustrate its validity in simulating laminar, turbulent and buoyant 
flow in helical coils. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Fluid flow in a helical coil is generally treated in a toroidal co-ordinate ~ y s t e m ~ - ~  which is not 
available as a standard option in many general-purpose programs for calculating three-dimen- 
sional flows. While it is possible in principle to convert a cylindrical co-ordinate system into a 
toroidal co-ordinate system by adding the extra terms as source terms, it is difficult because of the 
amount of coding involved. In view of this, the problem of flow in a curved duct is reformulated in 
a simpler manner by treating it as a flow in a straight duct in which each fluid element is subject to 
a centrifugal force given by F ,  = pu2/R', where u is the axial velocity of the fluid element and R' is 
the local radius of curvature of the path taken by the fluid element had it been flowing in a helical 
coil (the notation used is given in Appendix I). As shown in Appendix 11, the addition of F,  as a 
body force correctly models the acceleration experienced by a fluid element moving in a curved 
path; however, the model neglects certain geometrical terms which are of the order of d/D or 
higher. As will be shown later, this approximation introduces an error in predicting local 
variables for sharp bends, but the circumference-averaged quantities are well predicted. We note 
that this straight-tube formulation makes it possible to specify the problem of flow in curved pipes 
using a Cartesian or cylindrical co-ordinate system as shown in Figure 1. The centrifugal force is 
resolved along the three axes and is added to the respective momentum equations as a source 
term. Thus the mathematical model of steady state flow in a helical coil of circular cross-section is 
as follows: 

continuity, 

x-momentum (axial direction), 

v - (pu) = 0; 

aP V.(puu)-V.(pVu) = ----; 
ax 

r-momentum (radial direction), 
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Figure 1. Straight-tube formulation: simulation of flow in a helical coil by imposing a centrifugal force on fluid flowing in 

a straight tube inclined at the helix angle IP 

&momentum (circumferential direction), 

1 ap pu2 

r ae R‘ 
V ~(puw) - V.(pVw) = -- - -_ sin 8; 

V -  (pu T )  -V. ($ V T )  =O. 

(4) 

(5 )  

These equations are solved as a set of elliptical partial differential equations with constant 
physical properties, i.e. p ,  p, C ,  and 1 are specified. The following boundary conditions are 
used: 

inlet, 
outlet, 
wall, 

plug velocity and temperature profiles; 
fully developed flow, i.e. a( )/ax =O; 
no-slip boundary condition for the momentum equation, i.e. u = u = w = 0 at r = r,,. 

For the energy equation, either a constant heat flux ( - q ’ ’ / ~ )  or a constant wall temperature 
(T,  = To) is applied as boundary condition. 

For turbulent flow calculations the standard k--E modelI3 is used and a log-layer is imposed at 
the wall.” The addition of the centrifugal force term F ,  in the momentum equations introduces 
extra terms in the k--E model. These terms are derived in Appendix 111. In cylindrical co-ordinates 
the additional term in the k-equation is given by 

2pu - __ 
7 R (u’u’ cos 0 - u’w’ sin e), 

where u’, u’ and w‘ are the fluctuating velocity components and the overbar indicates time 
averaging. Following the formulation of the k--E model, and u)wI are evaluated by 
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The extra terms in the &-equation are derived in a manner analogous to that of the buoyancy 
term,' namely by multiplying the extra term in the k-equation by Elk. Thus the following source 
term is added to the &-equation: 

The effect of buoyancy is considered in some cases. A Boussinesq appr~ximat ion '~  is used; that 
is, an extra body force due to density variations caused by temperature differences of the form 
p, , ,gp(T-  T,,,) is added to the appropriate momentum equations. 

3. NUMERICAL SOLUTION PROCEDURE 

The above set of partial differential equations was solved using the HARWELL-FLOW3D 
computer program,' which predicts flows in complex three-dimensional geometries. The pro- 
gram uses a finite difference method on a general non-orthogonal body-fitted grid. In contrast 
with most fluid flow algorithms, a non-staggered grid is used with velocity components in fixed 
directions. A modified and three-dimensional version of the Rhie and Chow a l g ~ r i t h m ' ~  is used 
to suppress difficulties due to chequerboard oscillations in pressure and velocity traditionally 
associated with naive use of non-staggered grids. The program has a polyalgorithmic structure, 
whereby options are available for the user to specify different discretization schemes, solution 
algorithms and linear algebra solvers. Special effort has been expended in vectorizing the code for 
efficient running on the range of CRAY computers. 

In the present problem the SIMPLEC16 pressure correction algorithm was used to determine 
the velocity and pressure fields. It was found that the use of PISO17 did not improve the 
convergence characteristics. The hybrid differencing scheme'$ was used to estimate convective 
fluxes. Other differencing schemes such as higher-order upwind differencing'$ and QUICK' 
were tried for two laminar flow cases. It was found that the results were not significantly different 
from those obtained using hybrid differencing, indicating perhaps sufficiently fine resolution of 
the velocity field. In view of its relative robustness, the hybrid differencing scheme was used in all 
subsequent calculations. 

Figure 2(a). Non-uniform r-0 grid used for the calculation of flow in a helical coil 
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Figure 2(b). Effect of grid size on the numerical solution at a Dean number of 633. The axial velocity profiles are along a 
diametrical line inclined at 15" to line BB 

The numerical computations were done on a 20 x 15 x 24 grid in the x-, r- and &directions 
respectively, with non-uniform grid spacing in the axial and radial directions. The grid in an r-8 
plane is shown in Figure 2(a). That this grid gives sufficiently accurate results can be seen from 
Figure 2(b), where the axial velocity profiles obtained by a 15 x 24 grid and by a 30 x 24 grid in the 
fully developed flow region are compared. The grid in the axial direction was made to expand so 
as to have closer grid spacing in the developing region of the flow. The calculations were 
performed over a wide range of Dean numbers De, defined as Re, , / (d /D) ,  where Re is the 
Reynolds number based on the mean flow velocity and duct inside diameter. A quantity called the 
total mass residual was used to test for convergence. It is defined as the sum over all control 
volumes of the modulus of (pu-a) over all faces of a control volume. The solution was said to have 
converged if the total mass residual was less than a maximum permissible value, typically of the 
order of 10eC6. It was found that lower underrelaxation factors of the linear equation solvers were 
sometimes required to obtain convergence, especially at high Reynolds numbers. 
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4. RESULTS AND DISCUSSION 

The results of our study are presented in two parts. In Section 4.1 the above model is validated for 
large coil-to-tube diameter ratios by qualitative and quantitative comparison with other num- 
erical and experimental results. As discussed earlier, the model neglects terms of the order of d /D 
and higher. The effect of these terms on the prediction of the flow field is investigated in 
Section 4.2. 

4.1. Validation of model 

Flow in a helical coil is simulated by imposing a local centrifugal force on the fluid in each 
control volume. In order to show that this model accurately simulates the flow in a helical coil of 
large coil-to-tube diameter ratio, we compare the predicted flow field and temperature profiles in 
laminar and turbulent flow with other numerical and experimental results. 

Figure 3 shows the axial velocity profile along the horizontal diametrical axis (plane AA in 
Figure 1) at Dean numbers of 195 and 955. Our results are compared with those of Soh and 
Berger,’ who have used a toroidal co-ordinate system to solve the exact form of the 
Navier-Stokes equations. We find excellent agreement between the two. Figure 4 shows the 

Figure 4. Streamfunction plots in an r-8 plane at a Dean number of (a) 195, (b) 447, (c) 633 and (d) 955. The centres of the 
vortices shift towards the inner side as De increases 
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streamfunction contours in the fully developed flow region. We see that as the Dean number 
increases, the centre of the vortex shifts to the inner side of the coil, which is consistent with the 
interpretation of Soh and Berger.’ Note that quantitative comparison of streamfunction contours 
is possible if we use the same values of velocity, diameter, density, etc. which constitute the 
governing non-dimensional parameters (such as De) of the flow. Since all this information is not 
available from Reference 7, the streamfunctions are only compared qualitatively. However, the 
fact that the velocity profiles and the friction factors agree quantitatively shows that the flow field 
is similar in both cases. 

Figure 5 shows the comparison with the measured velocity profile of Mori and Nakayama.’ 
Also shown are the predicted values of Patankar et aL6 who have used a marching technique to 
solve an approximate form of the governing partial differential equations derived by assuming 
constant pressure across the cross-section. Again the agreement is quite good. 

As explained in Section 2, the addition of the source F ,  in the momentum equations introduces 
certain extra terms in the k- and &-equations. Figure 6 shows the comparison of the predicted 
axial velocity profile with the experimental data of Hogg.”. It can be seen that when the extra 

1.5 

-1-0 0 r/ro 1.0 

Figure 6. Comparison of the predicted axial velocity profile with experimental data in turbulent flow; Re = 89000, 
D / d = 2 5 . 9 .  FLOW3D predictions with (broken line) and without (solid line) extra terms due to F, in the k-equation are 

shown. The squares represent the data of HoggZ0 
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terms are included, the predicted velocity profile compares better with the measured one. The 
predicted friction factor also increases by about 5 YO, thus reducing the underprediction of the 
friction factor from 10% to 5% for this flow condition. 

Figure 7(a) shows the predicted and the measured non-dimensionalized temperature profiles. 
The agreement is less satisfactory than that for the velocity profiles. This may be attributed in part 
to the specification of the thermal boundary conditions. In our simulations we have imposed 
either constant wall temperature or constant heat flux at the wall, whereas in actual experiment 
the heat transfer near the wall is governed by both conduction within the wall and convection in 
the flow. It is interesting to note that Mori and Nakayama’ have reported nearly constant wall 
temperature in spite of imposing constant wall heat flux. The problem is also compounded by the 
distortion of the wall due to coiling, although this should have only a small effect in this case, the 
coil-to-tube diameter ratio being very large. It should also be noted that the numerical predic- 
tions of Patankar et aL6 also fail to reproduce the experimental data and that they cite 

HARWELL -FLOW 3D ; q”= constant 
---- T,= constant 

0 Mori and Nakayama (experimental) I 3.0 

/ -  
I 
I t I 

c 

/ /’ 
I 

-1.0 - 0 . 5  0.0 

(a) r /ro 

0.5 1 .o 

Figure 7. (a) Comparison of the predicted temperature profile with the measured data of Mori and Nakayama;* 
Re = 4O00, Dld = 40 (b) Predicted temperature contours 
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experimental error or imperfect specification of boundary conditions in Reference 2 as possible 
causes. Figure 7(b) shows the predicted temperature contours in an r-0 plane. We note that the 
contours are symmetric about the horizontal plane and that the maximum wall temperature 
occurs on the inner wall. 

Figure 8 shows the effect of buoyancy. Because of the circumferential variation of the axial 
velocity profile (see Figure 5), the heat transfer coefficient also varies significantly around the 
periphery of the tube. Thus, in a non-isothermal flow with constant wall heat flux, the average 
fluid temperature will be higher on the inner side of the tube (see Figure l), where the heat transfer 
coefficient is low, than on the outer side. Thus the buoyancy forces will not exhibit symmetry 
about a vertical or a horizontal plane. The secondary flow, now a result of centrifugal force and 
buoyancy-driven gravitational flow, will not be symmetric either. This is reflected in Figure 8(c). 
The contours of temperature in buoyant flow are shown in Figure 8(d). It can be seen that the 
symmetry about line AA (see Figure 7(b)) is now lost and that the point of maximum wall 
temperature shifts upwards, although it still lies on the inner side. Our calculations show that the 
effect of buoyancy is pronounced only at low De numbers (for a given wall heat flux) and that it is 
negligible for the case shown in Figure 7. Thus the discrepancy between the predicted and the 
measured temperature profiles cannot be explained by the effect of buoyancy alone. 

The coil-to-tube diameter ratio D/d in the above calculations was varied between 10 and 80. 
The results show that the straight-tube model for simulating flow in a helical coil is valid for this 
range of ratios. One therefore expects the model to give satisfactory results for D/d > 10. 

4.2. Application of the model to sharp bends 

The above model can be applied to advantage in the calculation of flow field in bends by 
imposing centrifugal force in the region of the bend. However, since bends are generally sharp, i.e. 
with small bend radius to duct diameter ratio, the neglect of geometric distortion terms in this 
model introduces an error. The extent of this error can be estimated by comparing its predictions 
with those from an exact simulation. 

Figure 9 shows the two formulations of the problem of flow in a curved duct: (a) full simulation, 
where a grid in the form of the bend is generated using a boundary-fitted co-ordinate system; 
(b) straight-tube formulation, where the effect of curvature is modelled by adding a centrifugal 
force term in the momentum equation. For facility in generating the grid, the duct was taken to be 
of rectangular cross-section. A 30 x 20 x 20 grid in the x- (axial), y- and z-directions was used for 
both methods. The grid spacing in any y-z plane is uniform. However, in the x-direction the grid 
spacing in the region of the bend was much less than away from it. Identical grid spacing was used 
along the duct centreline for both the full simulation method and the straight-tube formulation 
method. 

Figures 10 and 11 show the comparison of the axial velocity profiles in the mid-plane predicted 
by the two methods for a bend radius to duct hydraulic diameter ratio D / d h  of 2.3 and 5 
respectively. It is seen that there is significant discrepancy in the velocity profile prediction in the 
first case, but that it is much less in the latter. Part of this discrepancy may be due to the non- 
orthogonality of the grid in the full simulation. However, a major part of the discrepancy can be 
attributed to the neglect of terms involving the product of d / D  and secondary flow velocities, both 
of which become appreciable for sharp bends. Figure 12 shows the prediction of wall shear stress 
by both methods in the first case. It can be seen that although the local shear stress prediction is 
subject to error, the prediction of circumference-averaged shear stress (Figure 12(d)) is quite 
good. 
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Figure 8. Effect of buoyancy at a Dean number of 138 on (a) the axial velocity profile along line AA, (b) the axial velocity 
profile along line BB, (c) the secondary flow in an r-0 plane and (d) the predicted temperature contours 

plug vel profile 

/ 
Wall: ' 

no-slip 5 
/ 
/ 
/ 

Outlet: 
fully developed flow 

F ,  = pu2/R' 

Inlet: wall: Outlet: 
plug vel profile no-slip fully developed flow 

Figure 9. Two different formulations of the problem of flow in a curved duct: (a) full simulation method; (b) straight-tube 
method 
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Figure 10. Comparison of the axial velocity profiles at mid-plane in a 90" bend in a duct of square cross-section. The 
predictions made by the full simulation method (continuous line) and by the straight-tube formulation (broken line) are 
compared at (a) 5", (b) 32", (c) 59" and (d) 86" into the bend. The Reynolds number of the flow based on the duct hydraulic 

diameter is 800, and the bend radius to duct diameter ratio is 2.3 
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Figure 11. Same as  Figure 10 except that the bend radius to duct hydraulic diameter ratio is 5 
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Figure 12. Comparison of the predicted wall shear stress on (a) the outer wall, (b) the inner wall, (c) the top/bottom wall 
and (d) the circumference-averaged value as a function of the axial distance 

5. CONCLUSIONS 

The paper describes the numerical simulation of the flow field in a curved duct by imposing a 
spatially varying centrifugal force on a flow in a straight tube. The model neglects certain 
geometric terms of the order of d / D  and higher. This model has been used to simulate 
laminar/turbulent, buoyant/isothermal flow in helical coils and bends. Comparison with experi- 
mental results and more exact numerical formulations shows that it gives excellent results for 
small d / D  ratios. For sharp bends ( d / D  > 0.2), significant error may be expected in the prediction 
of local variables, although the circumference-averaged wall shear and hence the heat transfer 
coefficient are well predicted. In view of this, this formulation should be especially useful for 
engineering problems. 

The straight-tube formulation should also be useful in applying advanced turbulence models 
such as algebraic or Reynolds stress modelsI3 to curved ducts. Such models are generally 
applicable only for an orthogonal grid. For example, they contain wall reflection terms, which are 
very difficult to evaluate for a non-orthogonal grid. Thus they cannot be readily applied to the 
simple case of flow in a curved duct of rectangular cross-section; the present formulation makes it 
possible to determine the flow field at least to a first approximation. 



S. JAYANTI. G. F. HEWITT AND J. R. KIGHTLEY 

APPENDIX I: NOTATION 

area vector (m2) 
specific heat at  constant pressure (J kg- K - I )  

tube inner diameter (m) 
hydraulic diameter of the duct, (4 x flow area)/(wetted perimeter) (m) 
coil diameter (m) 
Dean number, Re J( d /  D )  
centrifugal force (N) 
acceleration due to gravity, 9.81 m s-’ 
channel height (m) 
turbulent kinetic energy (m2 s - ~ )  
pressure (N  md2)  
heat flux (W m-2)  
radial position (m) 
inner radius of the tube, d / 2  (m) 
local radius of curvature (m) 
Reynolds number, u,d/v  
temperature (K) 
temperature at the centre of the tube (K) 
mean temperature of the fluid (K) 
reference temperature (K) 
wall temperature (K) 
velocity vector (m s-’)  
mean flow velocity of the fluid (m s-’) 
velocity components in an orthogonal co-ordinate system 
Cartesian co-ordinate system 
cylindrical co-ordinate system 
toroidal co-ordinate system 

Greek letters 

B 
E 

1 
P 

P 
Prcf 

Tw 

L, s 

V 

coefficient of thermal expansion (K-’) 
turbulent energy, dissipation rate (m2 s-’) 
thermal conductivity (W m-’ K-’ )  
dynamic viscosity (kg m- ’ s) 
kinematic viscosity ( m2 s- ’) 
density (kg m-3) 
reference density (kg m-3)  
wall shear stress (Pa)  
wall shear stress in a straight duct (Pa) 

APPENDIX I1 

In this paper we present a simplified ‘straight-tube’ formulation for the simulation of flow in a 
helical coil. The approximations made in this formulation can be derived by comparing it with the 
‘exact’ formulation using a toroidal co-ordinate system. 

Consider the mathematical model of Soh and Berger’ for the fully developed flow in a helical 
coil. In a toroidal co-ordinate system ( r ,  0,4) the Navier-Stokes equations can be written as 
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axial momentum, 

587 

B Re 
au d 
- + SU + --u(vcose - wsin8) = - + - Tu - - 
at DB 

radial momentum, 

a0 - + Sv - - - __ 
at r DB 

D Br 
-___ 

0-momentum, 

sinO(ucos0- 
d Z  -- 

D ~ B ~  

continuity, 

boundary conditions, no-slip at the wall; 

where 

The Reynolds number Re is defined on the basis of tube radius: 

u 0 = [ - - (  i d  a p  )I1''. 
P D  % 

For coils of small tube-to-coil diameter ratios, d / D  < 1 and consequently 

d 
D 

B = 1 + -rcos8 1, 
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Thus the governing set of equations reduces to the Navier-Stokes equations in a cylindrical co- 
ordinate system in which an extra ‘centrifugal force term’ p u 2 / R  is added to the appropriate 
momentum equations. This is our ‘straight-tube’ formulation. 

APPENDIX 111 

The addition of the centrifugal force term F, = pu2 /R‘  in the momentum equations (3) and (4) of 
Section 2 will introduce extra terms in the time-averaged equations for the simulation of 
turbulent flow. In this appendix these terms are derived and are modelled in a manner consistent 
with the k--E m0de1.I~ 

Extra terms in the momentum equations 

component in F,, and taking the time average, we get 
Substituting u = U + u’, where U is the time-averaged quantity and u‘ is the fluctuating 

- 

pU2 pu’2 
F,, , = time-averaged centrifugal force term in turbulent flow = I + ~ 

Now, since ( U ” / U 2 )  - 10-2-10-3, the contribution of the fluctuating component can be neg- 
lected. Alternatively, for isotropic turbulence, an assumption inherent in the k--E model, 

R R ’ ‘  

Thus the centrifugal force term F, for turbulent flow is 

p i 2  4 p k  
y + - y  R 3 R  

and is resolved along the radial and circumferential directions. 

Extra terms in the turbulent kinetic energy equation 

The turbulent kinetic energy equation can be derived as follows. The time-averaged 
momentum equations are subtracted from the time-dependent ones. The resultant equation in 
each co-ordinate direction is multiplied by its fluctuating component of the velocity. The three 
equations are then summed and time-averaged. After some algebraic manipulation, the exact 
turbulent kinetic energy equation corresponding to the momentum equations of Section 2 can be 
written in a mixed tensorial and cylindrical co-ordinate system as 

where 

SFc = source terms due to the centrifugal force term F, , 

-- __ _ _ ~  
- _  - ~ ( 2 ~ u ’ u ‘  + u’u’u’) c o s ~  - (2i iu’w’ + u’u’w‘) sin01 R‘ 

In the above terms it can be shown that Iu’u’u’I < 12Ukv ’ l .  
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If one assumes perfect correlation between U’ and m, then 

Iu’u’u’ I = I J(k2)I [UIUll ; 
thus 

Then 

and the triple correlation term can be neglected. 
Thus the extra terms due to F, in the k-equation can be written as 

2pu __ ~ 

SFc = I (u‘o’costf - u’w’sintf). 
R 
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5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

20. 

REFERENCES 

W. R. Dean, ‘The streamline motion of fluid in a curved pipe’, Phil. Mag., 5, 673-695 (1928). 
Y. Mori and W. Nakayama, ‘Study on forced convective heat transfer in curved pipe (1st report, laminar region)’, Int. 
J .  Heat Mass Transfer, 8, 67-82 (1965). 
H. Ito, ‘Friction factors for turbulent flow in curved pipes’, J .  Basic Eng., 81, 123-134 (1959). 
A. N. Dravid, K. A. Smith, E. W. Merril and P. L. T. Brian, ‘Effect of secondary motion on laminar flow heat transfer 
in helically coiled tubes’, AIChE J . ,  17, 1114-1122 (1971). 
C. E. Kalb and J. D. Seader, ‘Heat and mass transfer phenomena for VISCOUS flow in curved circular tubes’, Int. J .  Heat 
Mass Transfer, 15, 801-817 (1972). 
S. V. Patankar, V. S. Pratap and D. B. Spalding, ‘Prediction of laminar flow and heat transfer in helically coiled tubes’, 
J .  Fluid Mech., Part 3, 62, 539-551 (1974). 
W. Y. Soh and S. A. Berger, ‘Fully developed flow in a curved pipe of arbitrary curvature ratio’, Int. j .  numer. methods 
juids ,  7, 733-755 (1987). 
N. Padmanabhan, ‘Entry flow in heated curved pipes’, Int. J .  Heat Mass Transfer, 30, 1453-1463 (1987). 
K. Fugagomi and Y. Aoyama, ‘Laminar heat transfer in a helically coiled tube‘, Int. J .  Heat Mass Transfer, 31, 

P. H. M. Bovendeerd, A. A. van Steenhoven, F. N. van Vosse and G. Vossers, ‘Steady entry flow in a curved tube’, 
J .  Fluid Mech., 177, 233-246 (1987). 
I. Dmirdzic, A. D. Gosman, R. I. Issa and M. Peric, ‘A calculation procedure for turbulent flow in complex 
geometries’, Comput. Fluids, 15, 251-273 (1987). 
A. D. Burns, N. S. Wilkes, I. P. Jones and J. R. Kightley, ‘FLOW3D: body-fitted coordinates’, AERE Report-12262, 
HMSO London, 1986. 
W. Rodi, Turbulence Models and Their Application in Hydraulics-A State-ofthe-Art Review, 2nd revised edition, 
University of Karlsruhe, 1984. 
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. I, The MIT Press, Cambridge, MA, 1977. 
C. M. Rhie and W. L. Chow, ‘Numerical study of the turbulent flow past an airfoil with trailing edge separation’, 

J. P. van Doormaal and G. D. Raithby, ‘Enhancements of the SIMPLE method for predicting incompressible fluid 
flows’, Numer. Heat Transfer, 7, 147-163 (1984). 
R. I. Issa, ‘Solution of the implicitly discretised fluid flow equations by operator splitting’, J .  Comput. Phys., 61, 40 
(1985). 
N. S. Wilkes and C. P. Thompson, ‘An evaluation of higher-order upwind differencing for elliptic flow problems’, in 
C. Taylor, J. A. Johnson and W. R. Smith (eds), Numerical Methods in Laminar and Turbulent Flow, Pineridge Press, 
Swansea, 1983, pp. 248-257. 
B. P. Leonard, ‘A stable and accurate convective modelling procedure based on quadratic upstream interpolation’, 
Comput. Methods Appl. Mech. Eng., 19, 59-98 (1979). 
G. W. Hogg, ‘The effect of secondary flow on point heat transfer coefficients for turbulent flow inside curved tubes’, 
Ph.D. Thesis, University of Idaho, 1968. 

387-396 (1988). 

A l A A  J., 21, 1527-1532 (1983). 




